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Abstract—In vivo Wireless Nanosensor Networks (iWNSNs)
consist of communicating miniature devices with unprecedented
sensing and actuation capabilities, which are able to operate
inside the human body. iWNSNs are the basis of emerging
healthcare applications such as intra-body health-monitoring
and control of biological processes at sub-cellular level. Major
progress in the field of nanoelectronics, nanophotonics and
wireless communication is enabling the interconnection of the
nano-devices in iWNSNs. In this paper, the effect of single
biological cells and cell assemblies on the propagation of optical
wave for intra-body communications of nanosensors is analyt-
ically investigated in three distinct ways, namely, geometrical,
time-domain, and frequency-domain analyses. The analytical
channel model is validated by means of full-wave electromagnetic
simulations through a case study for Red Blood Cells (RBCs)
inside the blood plasma. The results show that RBCs perform
as optical micro-lenses that confine the radiated light on a focal
area, which agrees with recent experimental achievements. It is
also shown that changes in shape and size of the cells slightly
alter the channel impulse response. This study motivates the
development of new communication solutions for intra-body
nanoscale optical communication networks as well as new nano-
biosensing strategies able to identify diseases which cause cell
shape alterations.

Index Terms—Biological cells, biological effects of optical
radiation, communication channels, electromagnetic propagation
in nonhomogeneous media, optical communication, geometrical
optics.

I. INTRODUCTION

Major progress in the field of bio-photonics is enabling
the control and monitoring of biological processes through
the utilization of light. For instance, by incorporating light-
actuated/light-emitting proteins into cells, key biological pro-
cesses can be controlled and monitored in real time [2], [3].
One of the interesting characteristics of the optical signals
is their very small wavelength, which theoretically enables
precise temporal and spatial control and monitoring. Currently,
most of the existing studies rely only on traditional optical
sources and detectors, which, due to their size and capabil-
ities, limit the applications of light-mediated bio-interfaces.
Nanotechnology is providing the engineering community with
a new set of tools to create novel nanoscale devices with
unprecedented functionalities. These include, among others,
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plasmonic nano-lasers with sub-micrometric footprint [4],
plasmonic nano-antennas able to confine light in nanometric
structures [5], or single-photon detectors with unrivaled sensi-
tivity [6]. Plasmonic nano-lasers working in conjunction with
nano-antennas can serve as nano-actuators of light-controlled
processes. Similarly, nano-detectors enhanced with plasmonic
nano-antennas can act as nanosensors. As a results of all
these improvements, it is not beyond imagination that within
a few years we will see these emerging nanomachines in our
daily life with remarkable applications ranging from health-
care monitoring wearable devices and intra-body microfluidic
nanomachines to brain-machine interface implants [7], [8].

By means of communications, these nanomachines will be
able to autonomously communicate among themselves or with
a control/monitoring center to transmit their sensing informa-
tion, receive the controlling commands, and coordinate joint
actions when needed. The resulting iWNSNs enable smart
health-monitoring and drug-delivery systems, among many
others. Within several recently proposed wireless technologies
that could enable the communication between nanomachines,
the molecular and electromagnetic communications are the
leading ones. The molecular communication path has been
thoroughly investigated [9], [10]. This mechanism is natu-
rally used by biological cells to exchange information and
could be enabled by means of synthetic biology; however,
the very low achievable data rates severely limit the effi-
ciency of nanosensor networks [11]. From the electromagnetic
perspective, emerging plasmonic nanoantennas have recently
enabled the wireless communication among nano-devices at
very high frequencies, ranging from the Terahertz (THz)
band (0.10-10 THz) [12] to the infra-red and visible optical
range [5]. The propagation of THz-band waves inside the
human body is drastically impacted by the absorption of liquid
water molecules and causes internal vibrations into molecules,
which results in heat and could lead to photothermal tissue
damage [13]. Alternatively, the majority of existing nano-bio-
sensing technologies rely on the use of light due to the fact
that the molecular absorption of liquid water is minimal in the
optical window (between 400 THz and 750 THz) [14].

In this direction and in order to analyze the feasibility
of intra-body wireless optical communications, one of the
most important challenges is to understand the propagation
properties of light in biological scenarios. Traditional channel
models for light propagation in biological tissues [15–18]
cannot accurately describe the channel properties in nanoscale
scenarios because of several reasons. First of all, in intra-
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body NanoScale Optical (iNSO) communications the wave-
length range of study is in the order of several hundreds of
nanometers; therefore, due to the relatively large particles -
compared to the wavelength-, and short range communication
distances, the macroscopic properties of different particles
cannot describe the details of propagation pattern of the light
in nanoscale. Furthermore, the radiated light from a nano-
antenna covers a much smaller area than that of the external
macroscopic laser; hence, the wave does not radiate through a
large enough number of cells to be dealt with as an isotropic
medium. In view of the aforementioned drawbacks, we have
studied the propagation pattern of the light in human blood
by analyzing the impact of single cells rather than a homoge-
neous material, and have developed a detailed channel model
for iNSO communications earlier in [1] and [19]. However,
the effect of the geometry changes on the channel impulse
response in the time domain and verification of the geometrical
model with the frequency and time domain analyses have not
been considered in the literature to this point.

In this paper, we analyze the impact of single biological
cells and cell assemblies on the propagation of optical wave
in three distinct ways. More specifically, first, due to the rather
large size of the biological cells compared to the wavelength,
we follow a geometrical approach to trace path loss and time
delay of each of the optical rays that encounter a biological
cell. A closed form channel impulse response on the focal
line is derived by aggregating all the rays while considering
the attenuation and delay of each of them. The model that
is proposed in the current work is a generic model which
can be applied to any type of biological cells. However, the
communication in the human blood is considered as a case
study to verify the analytical model and simulation results.
There are two main reasons to consider the communication
inside the human blood, namely, applications of the intra-
body communications in the health monitoring and disease
diagnosis that is mostly performed by means of blood test
as well as recent experimental results on light propagation
through Red Blood Cell (RBC) [20] that can be used as a
reliable reference to validate our analytical model and simula-
tion results. In this regard, We further apply the parameters
of RBC floating inside the blood plasma to evaluate our
analytical model. We show that after passing a single RBC,
all the optical rays will be focusing on the central line.
Following the geometrical approach, a comprehensive study
on the intra-body communication channel in the time domain
is given and the effect of the different sizes and shapes of
the cells on the channel impulse response is analyzed. Finally,
an analytical frequency domain channel model is presented
and the behavior of randomly positioned cells inside a blood
vessel is provided. We also validate all the aforementioned
channel model analyses by means of extensive full-wave
electromagnetic simulations for the case study of RBC inside
the blood plasma. The results prove that the RBCs perform as
optofluidic micro-lenses inside the human blood in terms of
confining the light that is being radiated through them on a
focal area right after the cell. In fact, this phenomenon also has
been recently achieved through experiments on interactions
of light and RBCs [20]. Moreover, simulations with different

shapes of RBCs are provided which shows that the changes
in the shape and size of the cells slightly alter the channel
impulse response which can be used as fingerprints of the
healthy and infected cells in identification of diseases.

This study conducts the development of practical communi-
cation strategies among autonomous in-vivo nano-biosensors
which can operate inside the human body in real time. Thanks
to the light focusing property of the RBCs which eases the
propagation of the light inside the human blood by reducing
the exponential path loss, and by utilizing simple and feasible
modulation/demodulation schemes and transmission/detection
methods, the optical wireless communication is a promising
technique for future iWNSNs specifficaly inside the human
blood vessel. Furthermore, new nano-biosensing strategies
can be developed as a way to provide faster, low-cost, and
more accurate disease diagnosis and treatment than traditional
technologies. As an specific example, disease identification
can be done by detecting the slight changes in the channel
impulse response, caused by (sub) cellular abnormalities which
may appear in terms of either the change in shape of the
blood cells (e.g. anemia, which causes the shape of the RBC
to change to a sickle or crescent shape) or the presence of
pathogens.

The remainder of the paper is organized as follows. In
Sec. II, we define the biological cell model for iWNSNs com-
munication channel model, and further discuss the interaction
of light and biological tissues. Sec. III contains a thorough
analysis on the propagation pattern of light in interaction
with a biological cell based on geometric optics. In Sec. IV,
we develop a time domain channel model and study the
channel impulse response based on Maxwell’s equations and
electromagnetic radiation of the light, while Sec. V discusses
the frequency domain characteristics of light propagation in
biological tissues. Moreover, extensive simulations are demon-
strated and verified with numerical results in Sec. III to Sec. V
for each of the aforementioned analyses. Finally, we conclude
the paper in Sec. VI.

II. SYSTEM MODEL AND ANALYSIS METHOD

A. Cell model

Different types of cells affect the propagation of light in
different ways. In this work, without loss of generality of
our model, we focus on light propagation in blood vessels.
Human blood is composed by erythrocytes (also known as
RBC), leukocytes (also known as white blood cells), and
thrombocytes or Platelets. Among all these, RBCs are the
largest (7 microns) and most abundant (45%) and, thus, govern
the propagation of light in blood. Furthermore, all the blood
cells are floating inside the blood plasma (55% of the blood)
which is essentially water (92%).

Therefore, in our scenario, we consider RBCs immersed in
plasma. Plasma is modeled as a lossy medium with macro-
scopic properties of the water (complex permittivity ε4 in
Fig. 1) which mainly captures the effect of the medium on the
optical propagating wave. Each cell is modeled as a multi-
layered sphere, with the outer shell as the cell membrane,
filled with the cytoplasm and the nucleus (which is replaced by
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Fig.1. BiologicalCellModel.

hemoglobin(Hb)forthespecificcaseofRBC).Thespherical
celliswidelyusedinsimulationandanalyticalresearches[16–
18].However,theshapeofdifferentcellsarenotnecessarily
spherical,andthenucleusisnotalwaysatthecenterofit.
Nonetheless,duetotherandompositionsandmovementof
thecellsindifferentlayersofbiologicaltissues(bloodinthis
specificcase),thesphereshapecanbeadoptedasageneral
modelthatprovidesagoodapproximationforalltypesofcells
withdifferentshapes.AsdepictedinFig.1,foratypicalcell
wedefinethefollowinglayers:

• Innermostlayer:Core/nucleus(HbforRBC)withcom-
plexpermittivity 1andradiusr1,

• Intermediatelayer:Cellcytoplasmwithcomplexpermit-
tivity2andradiusr2,

• Outermostlayer:Cell membrane(fatforRBC) with
complexpermittivity3andradiusr3.

Notethatsincethebiologicalcellsarenotattractedtothe
magneticfields,theirmagneticsusceptibilityisverycloseto
zero,i.e.,χm ≈0.Hence,thepermeabilityofthecellsand
themedium,whichisdefinedasµ=µ0µr=µ0(χm +1),
canbeconsideredtobeequaltothepermeabilityoffreespace
(vacuum),µ0.Therefore,thecorrespondingwavenumbersk1,
k2,k3,andk4aredefinedwiththepermittivityofdifferent
layersoftheRBCandmediumrespectively.Itisrelevantto
notethatforthespecificexampleofRBC,althoughareal
healthyRBChasabiconcaveshape,theproposedspherical
cell modelprovidestractablesimulationsandclosed-form
analyticalresultswhilefocusingonmoreimportantparameters
oftheintra-bodyopticalchannel,suchasnanosclaecharacteri-
zationofeachtypeofcellsforshortrangecommunications.In
addition,toshedsomelightonthefactthatthespheremodel
isagoodenoughapproximationoftherealRBC,athorough
discussionontheeffectofthecellshapeonthepropagationof
thewavebesidesextensivesimulationsbyadoptingdifferent
geometriesfortheRBCaregiveninSec.IIIandSec.IV.

B.LightandBiologicalTissuesInteractions

Theradiationofthelightinamediumismainlyaffectedby
reflection,refraction,diffraction,andscattering.Thediffrac-
tionandscatteringhappenwhenthewavelengthoftheincident
lightiscomparabletothesizeoftheparticle,whilethe

refractionandreflectionarerelatedtotheintrinsicproperties
ofthematerialsandarestudiedingeometricoptics.
1)Diffraction:Diffractionoccurswhenthelightencoun-
tersaverysmallobstacle(onanedgeoramaterialwith
acoarsesurface)orpassesthroughatinyaperture.Having
inmindthatthediameterofabiologicalcellinthehuman
bodyisintherangeof5–100µm,itcanbeeasilyseen
thatthecircumferenceofacircularcrosssectionofeventhe
smallestcellwouldbearound15µm,whichismuchbigger
thanourwavelengthofinterest(600nm).Hence,theeffectof
diffractionisnegligibleinouranalysisofshininglightthrough
asinglesmoothshapedcellinahomogeneousmedium,i.e.,
thebloodplasma.
2)Scattering:Similarly,forthescatteringtherearethree
different majortheoriestoanalyzethewaythatthewave
deviatesfromastraighttrajectorybasedonthesizeofthe
particlethatitencounters.Adimensionlesssizeparameteris
definedbytheratioofthecharacteristicparticlediameterto
thewavelengthasfollows:

χ=
πD

λ/nr
, (1)

whereD isthediameteroftheparticle,λrepresentsthe
wavelengthinvacuumandnristherealpartoftherefractive
indexofthemedium.Basedonthevalueofthesizeparameter
χ,thescatteringmodeliscategorizedinthreegroups,namely,
Rayleighscatteringforχ 1, Miescatteringforχ≈1,
andgeometricscatteringforχ 1. Whereforthelatest
one,differentreferencessuggestdifferentthresholdsonhow
biggershouldbetheparticleforthegeometricopticstheory
tobevalid.Thisrangestartsfromχ≥10forusingRay
Tracingtheoryasaroughapproximationtothesolutionof
Maxwellequationsspeciallywhenthereisnodiffraction,up
toχ≥100whichisaverystrictthresholdforcertainstudies
suchasOpticalLevitation[21].
Incaseofthepropagationoflightinsidethehumanblood,
withnormalandhealthyRBCs,thesizeparameterisaround
χ=49forawavelengthof600nmandrefractiveindexof
nr=1.33forthebloodplasma.Althoughevenwhenχ≈50,
the Mietheoryisstillvalidandthemostaccurateknown
solution,buttheresultsofthegeometricapproximationis
closeenoughtothatoftheMietheory.Moreover,theultimate
goalofthepresentworkistofindavalidchannelmodelforthe
iNSOcommunicationinsidethehumanbodywheremostof
thecellsaremuchlargerthanthestudiedRBC.Inaddition,we
considerthescatteringcausedbythesmallerparticlesinside
thebloodplasmaasascatteringlosscoefficientµscabesides
theextinction(absorption)coefficientµabsforahomogeneous
mediumtoobtainamoreaccuratemodel.
3)Refraction:Whilediffractionandscatteringdonotpar-
ticipatesignificantlyinthepropagationofthelightaspassing
throughmicrometer-scalecells,refractionandreflectionplay
themainroleinthepropagationpattern.Refractionofthe
lightinabsorbingmaterialsisdescribedbyusingtherefractive
indexwhichisacomplex-valuednumber.Therealpartof
therefractiveindexaccountsfortherefraction,whilethe
imaginarypartdealswiththeabsorptionandissometimes
referredtoasextinctioncoefficient.
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Forourspecificcasestudyofcommunicationinsidethe
humanblood,TableIsummarizestherealandimaginary
partsoftherefractiveindexfordifferentlayersofaRBC
andthebloodplasmaforarangeofwavelengths[14],[22],
[23].Therefractiveindexofamaterialforelectromagnetic
radiationisequalton(w)= µr(w)r(w)whichdepends
onthefrequencyworequivalentlythewavelengthλ.Herer
istherelativepermittivity,andµristherelativepermeability
ofthematerial. Whiletherealandimaginarypartsofthe
refractiveindexareusedinSec.IIIforgeometricoptics
analysisinFresnelequationsandSnell’slaw,thepermittivity
andpermeabilityareusefulinMaxwell’sequationsanddeal
withtheelectromagneticradiationofthewavesthatareused
intimeandfrequencydomainanalysesinSec.IVandSec.V
respectively.

TABLEI
REFRACTIVEINDEXVSWAVELENGTH.

cytoplasm(water) fat Hb
λ(nm) nr(w) ni(w) nr(w) ni(w) nr(w) ni(w)

450 1.34 1.02e-9 1.46 2.29e-7 1.43 1.21e-3
500 1.33 1.00e-9 1.46 7.55e-8 1.42 4.45e-4
550 1.33 1.96e-9 1.46 3.39e-8 1.42 1.01e-3
600 1.33 1.08e-8 1.46 2.22e-8 1.41 8.84e-5
650 1.33 1.64e-8 1.46 2.44e-8 1.41 1.02e-5
700 1.33 3.34e-8 1.46 1.80e-8 1.41 8.63e-6
750 1.33 1.56e-7 1.46 5.83e-8 1.41 1.66e-5
800 1.33 1.25e-7 1.46 2.55e-8 1.41 2.78e-5
850 1.33 2.94e-7 1.46 4.30e-8 1.41 3.84e-5
900 1.33 4.86e-7 1.46 3.31e-7 1.41 4.59e-5
950 1.33 2.90e-6 1.46 2.98e-7 1.41 4.87e-5

Sincethebiologicaltissuesarenon-magneticattheop-
ticalfrequencies,thevalueoftherelativepermeability,µr,
isconsideredtobeequaltoone(asexplainedearlierin
Sec.II-A).Thereforetherealandimaginarypartsofthe
refractiveindexandtherelativepermittivityarerelatedtoeach
otherasfollows:

r,r(w)=n
2
r(w)−n

2
i(w), r,i(w)=2nr(w)ni(w),(2)

where r,r(w)and r,i(w)representtherealandimaginary
partsoftherelativepermittivityrespectively,whilenr(w),and
ni(w)aretherealandimaginarypartsoftherefractiveindex,
andn(w)=nr(w)−jni(w).
4)Reflection:

r·f(↵)r

F
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✓r ✓r

⌦  ✓i
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l21 l22

l23

l0

x
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~E0

dr

Whenlightpassesfromone mediumto
anotherwithtwodifferentrefractiveindexes,bothreflection
andrefractionmayoccur.TheFresnel’sequationsdescribe
whatportionofthelightisreflectedandwhatportionis
refracted(transmitted).Incaseofcommunicationinsidethe
humanblood,thefattissuewhichistheoutermostlayerofa
RBCcausesthebackscatteredlightbyreflectingbackapartof
theincidentlight.Thereflectiondoesnotplayasignificantrole
toformthemainimpulseresponseofthechannelatanypoint
afterthecell.Thereceivedsignalafterasinglecellmainly
consistsoftherefractedandtransmittedrays.However,inthe
caseofhavingmultiplecellsthereflectedraysofthelightfrom
theadjacentcellsresultinreceivingthedelayedversionsof
theoriginalsignalwhichcausesthemulti-path. Weconsider
thiseffectasanadjustmentmultiplierinthechannelimpulse
responseanalysislaterinSec.III.Theclosed-formanalysis
ofthereflectedraysisoutofthescopeofthepresentpaper.

Fig.2. EffectoftheHbasasphericallens.

Herewearemostlyinterestedintheforwardscatteredwaveto
findapropagationpatternforasinglecellthatcanbeutilized
toformacomprehensivechannelmodelconsistingofmany
cellsofdifferenttypes.Athoroughgeometricalanalysisonthe
refracted(transmitted)lightisgiveninSec.IIItocalculatethe
transmittedsignaloverthefocallineafterthecell.Aclosed-
formsolutionforthebackscatteredwavecanbefoundby
followingthesameapproachthathasbeenexplainedinSec.III
fortheforwardscatteredlight.

III.GEOMETRICALANALYSISFORLIGHTPROPAGATION
THROUGHBIOLOGICALCELLS

Geometricalanalysisofthelightpropagation,whichisalso
knownasRayOptics,isthelimitof Maxwell’sequations
whenthewavelengthissmallcomparingtothesizeofthe
particles[24].Asmentionedearlier,geometricanalysisisvalid
forthesizeofthebiologicalcellsandismuchtractableto
obtainaclosedformsolutionforthepropagationpattern.

Fig.2showsthethetraceofaraywhilepassingthrougha
spherewithadifferentrefractiveindex.Duetothesymmetry
inthegeometryweknowthatallraysoftheincominglight
(consideredtobeaplanewave)willbefocusedonthecentral
linethatiscomingoutfromthecell.Forthisreasonweare
mostlyinterestedtofindtheimpulseresponseofasinglecell
onthisspecificfocalline.Byconsideringalinearchannel,
weknowthatifasinglepulseisbeingtransmittedfrom
theantenna,wewillreceivemultipleversionsofthesame
pulsespreadintimeduetodifferentpathsthatthelightrays
gothrough.Therefore,theimpulseresponseofthechannel
includesdifferentdelayedpulses(andhenceaphaseshift)
fromalltheincomingraysoflight.Tofindtheimpulse
responseatapointonthefocalline,thefollowinghaveto
becalculated:

• Thelocationofthefocalpointonthecentralline(r·f(α)
inFig.2);

• Pathlossofeachoftheraysthatpassthefocalpoint,and
theintensityanddirectionofthereceivedsignal:EF;
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• Time (or the delay) between the transmitted and each of
the received rays at that point: τ .

As it can be seen in Fig. 2, there is a main ray perpendicular
to the surface which passes through the center of the cell
without any refractions, EmrF . This main ray further comes
out of the cell on the other side over the entire focal line. In
addition to that, there are other rays of light that encounter
refraction and pass through the cell and eventually cross the
focal line at a certain point (r·f(α) from the center of the cell),
EfrF . We call these rays the secondary (focusing) rays due to
the fact that all the rays with the same distance from the central
line focus at the same point on the focal line. A complete trace
of a single secondary ray is shown in Fig. 2, which is at a
distance dr from the central line. It can be easily seen that if
we cover all the rays that are corresponded to 0 < α < 1 -or
the upper half of the cell-, then by taking the integral of the
received signal over θ, which is the angle between the plane
of incident and the x axis in spherical coordinates, we can
find the complete answer at a point on the focal line.

When a trace of light passes through a layer with a different
refractive index and goes further through the same medium,
the angle of the output ray is the same as the input one, and
it only shifts proportionally to the thickness of the layer in
between. Therefore, since we consider the refractive index
of the blood plasma and the cell cytoplasm to be the same,
so the effect of the thin fat layer (in the scale of 0.01 of
the wavelength) of the cell in shifting the ray of the light is
negligible. Also the absorption and the time delay due to this
thin layer is insignificant and can be ignored in calculation of
the channel impulse response.

A. Focus Point

To find the focus point in Fig. 2, we define the normalized
distance parameter α as the ratio of dr to r, where dr is the
distance between the ray and the central axis of the sphere
(main ray), and r is the radius of the sphere. Then, f(α) can
be calculated as follows (see Appendix A):

f(α) =
α

sin
[
2
(
arcsin(α)− arcsin(

nr,1
nr,2

α)
)] , (3)

where r · f(α) is the distance of the focal point from the
center of the cell for all the incident rays of light in space
with normalized distance parameter α.

It can be observed that the value of the f(α) only depends
on the ratio between the refractive indeces of the media, i.e.,
nr,1
nr,2

, and regardless of the size of the cell, the ratio of the focus
point to the radius of the cell remains unchanged. Also, the
value of α is always between 0 and 1 for the plane optical wave
source that is emitting through the sphere, and is polarized
along x axis. The focus point always lies in between the upper
and lower bounds of the function f(α) multiplied by the radius
of the cell r. Referring to Appendix A, it can be observed that
the lower (fl) and upper (fu) bounds of the function f(α) can
be calculated as follows:

fl =
n2r,2

2nr,1

√
n2r,2 − n2r,1

, (4)
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fu =
nr,2

2(nr,2 − nr,1)
. (5)

Fig. 3 shows the range of the function f(α) for α ∈ (0, 1),
nr,1 = 1.33 (plasma) and nr,2 = 1.41 (Hb). As it can be seen
in this figure, almost 85% of the focal line consists of the
focusing rays with α ≤ 0.5, which corresponds to the 25%
outermost area of the cell. Interestingly the Brewster angle -in
which the boundary loss is minimal (see Sec. III-C)- happens
also within this interval. Therefore, most of the energy of the
incident light will be focused in the portion of the focal line
which is in a distance of r · f(1) to r · f(0.5) form the center
of the cell. After this interval, the light is mostly following the
exponential loss due to the molecular absorption and scattering
of the media (see Sec. III-C).

It is relevant to note that in the real case of RBC, there
will be some reflected rays back into the cell, also the total
internal reflections happen inside the cell due to the difference
between the refractive indices of fat, Hb and cytoplasm layers.
However, the amount of the reflected signal is very insignifi-
cant. According to the Fresnel’s equation (explained in details
later in Sec. III-C and equation (15)), for the wavelength of
450 nm, only 0.2% of the main ray will be reflected in the
boundary of fat and cytoplasm. This can be ignored in the
calculation of path loss and will not have a major impact on
the propagation of the light after the cell.

B. Time Delay for Each Ray of the Light

The time delay for the main ray at the focal line can be
calculated by adding all the partial times that takes for the
light to pass through different parts of the path in different
media, and is given by:

τmr =
1

c
(l0nr,1 + l11nr,2 + l12nr,1), (6)

where τmr represents the delay for the main ray at a point
on the focal line, c is the speed of light in vacuum, l0 is the
distance between the source and the cell boundary, l11 = 2r,
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andl12=r·(f(α)−1).Thedelayforanarbitrarysecondary
rayisgivenby:

τfr=
1

c
(l0nr,1+l21nr,1+l22nr,2+l23nr,1), (7)

whereτfr representsthedelayforanarbitrarysecondary
(focusing)rayatapointonthefocalline.Andl21,l22,and
l23aregivenasfollowsbyusingtheSinelaw:

l21=r1−cos(θi), (8)

l22=r
sin(2θr)

sin(θr)
, (9)

l23=r
sin(2θr−θi)

sin(2θi−2θr)
. (10)

Sinceθiandθrcanbecalculatedfromα,itcanbeseen
thatthetimedelayalsoonlydependsontherealpartofthe
refractiveindex,theparameterα,andthecellradiusr.

C.PathLossandtheLightIntensityontheFocalLine

Tofindtheintensityofthelightatapointonthefocalline,
wecalculatethepathlossofalltheraysthatarepassingthis
line.Byaggregatingalltheraysthatpassthesamepointand
includingthedelayforeachrayformSec.III-B,wewillbe
abletofindthechannelimpulseresponseatthedesiredpoint.
Therearethreedifferentlossesthathavetobeconsidered,

namely,themolecularabsorptionlossLabs,thescatteringloss
Lsca,andtheboundarylossLbound.Duetothefactthatwe
areconsideringaplanewaveastheemittinglightsource,there
willbenospreadinglosscausedbytheantennapropagation
pattern.Notethatinthecaseofusingadirectionaloromni
lightsourcethespreadinglossalsohastobeconsidered.The
molecularabsorptionlossindifferentmediaaccordingtothe
Beer-Lambertlaw[25]isgivenbyLabs=e

−µabsl,wherel
isthedistancethatthewavepasses,µabsistheabsorption
coefficientofthemediumandcanbecalculatedfromthe
imaginarypartoftherefractiveindexasfollows:

µabs=
4πni(w)

λ
. (11)

Theattenuationduetothescatteringcanalsoberepresented
asanexponentiallossLsca= e

−µscal,whereµscaisthe
scatteringcoefficientofthemediumandisgivenbyµsca=
NQscaσg,whereN istheparticleconcentration,σgisthe
geometriccrosssectionoftheparticles,andQscarepresents
thescatteringefficiencyoftheparticlesandisequalto[26]:

Qsca=
8

3
χ4Re

n2(w)−1

n2(w)+2

2

. (12)

Notethatχisthesizeparameteroftheparticleswiththe
definitionthathasbeengiveninSec.II-B2.
Finally,theFresnel’sequationsexplaintheattenuationofthe

refractedraywhenthelightmovesfromamediumtoanother
withadifferentrefractiveindex.AccordingtotheFresnel’s
law,partofthelightisrefractedandpartofitisreflected
attheboundarybetweenthemedia.WedefineLbound

✓
✓

~Ep

~Es
~E

x

y
z

Plane of
Incident

nr,1nr,2

r
↵=

dr
r

dr

asthe
boundaryattenuation,andasitcanbeseeninFig.2,this
attenuationhappenstwice.Oncewhenthelightentersthe
sphereandoncewhenitmovesout.Thebehaviordepends

Fig.4. Polarizationofthelightwavefordifferentplanesofincidentwith
differentθrangingfrom0to2π.

onthepolarizationoftheincidentray,whichcanbeseparated
intotwocasesofs-andp-polarized.RsandRparedefined
asthereflectanceofthes-andp-polarizedlightsrespectively,
andaregivenasfollowsfortheingoinglight:

Rs,i=
n1,rcos(θi)−n2,rcos(θr)

n1,rcos(θi)+n2,rcos(θr)

2

, (13)

Rp,i=
n1,rcos(θr)−n2,rcos(θi)

n1,rcos(θr)+n2,rcos(θi)

2

, (14)

whereRs,iandRp,i arethereflectanceofthes-andp-
polarizedingoinglightsrespectively(Fig.4).Followingthe
sametypeofequations,onecanfindthereflectanceofthe
outgoinglightsnamedRs,oandRp,oforthes-andp-polarized
wavesrespectively.ThetransmittanceofthelightTs/p,i/ois
givenasTs/p,i/o=1−Rs/p,i/o.Inthespecialcaseofthe
mainraywhereθi=θr=θo=0,thereflectanceisgivenby:

Rmr =
n1,r−n2,r
n1,r+n2,r

2

. (15)

Hencetheboundarylossforthemainrayisgivenby:

Lmrbound=(T
mr)2, (16)

whereTmr isthetransmittanceofthemainrayandisequal
to1−Rmr.Theboundarylossofasecondaryraywhich
formsaplaneofincident(containingtheincident,reflected
andrefractedrays)andhastheangleθwiththexaxis,is
givenby:

Lfr,sbound=Ts,iTs,o, L
fr,p
bound=Tp,iTp,o, (17)

whereLfr,sboundandL
fr,p
boundaretheboundarylossesforthes-

andp-polarizedpartsofasecondaryrayrespectively.
Fig.4showsthecrosssectionofthespherecellonthexy
plane.Notethatthepolarizationofthewaveisalongthex
axisandthedirectionofthepropagationisalongzaxis. We
solvetheproblemforanarbitrarysecondaryrayinaplane
ofincidentandthenintegratetheresultsoveralltheplanes
ofincidentsbycoveringθfromzeroto2π,whereθisthe
anglebetweentheplaneofincidentandthexaxisinspherical



7

coordinates (see Appendix B). The aggregated field coming
from the secondary rays with parameter α is derived as (see
Appendix B):

~EfrF (α) = π
∣∣∣ ~E0

∣∣∣ (Lfr,pcos(ψ) + Lfr,s)âx, (18)

where ~E0 is the incoming ray shown in Fig. 2, âx is the unit
vector in the direction of x axis, and Lfr,p and Lfr,s represent
the path loss that every p- and s-polarized secondary (focus-
ing) ray faces in its path to the focal point and are equal to
LabsLscaLfr,pbound and LabsLscaLfr,sbound respectively. Following
the same approach the received field coming through the main
ray over the focal line can be also given as:

~EmrF =
∣∣∣ ~E0

∣∣∣Lmrâx, (19)

where Lmr is the path loss that the main ray faces in its path
to a point on the focal line.

Note that ~E0 is initially considered to be polarized along
the x axis and hence propagating through z direction. From
equations (18) and (19), it can be seen that interestingly the
polarization of the received field on the focal line is also along
the x axis, and hence propagating through z. The polarization
of the main ray will remain the same while passing through
the cell since it is inline with the central line of the cell and
the plane of incident. However, for the secondary rays, as
mentioned earlier, each ray has two distinct and separate s-
and p-polarized parts for every plane of incident with a dif-
ferent θ. According to Fresnel’s equations, rays with different
polarizations will face different reflectance and transmittance.
Therefore, the polarization of each of the rays will be changed
while inside the cell. Once the rays move out of the cell and
pass the boundary for the second time, their polarization will
be changed again with respect to θ, but still not the same as
before entering the cell. Although, interestingly, when they
aggregate at a focal point, all the light rays that are polarized
along y and z axes will be canceled out with each other and
the resulting field will be polarized along x axis.

Now that we have all the information for the path loss and
delay, the channel impulse response on the focal line between
the points fl and fu can be given as:

H(f, d) = γ(r)Gmp ·
(∣∣∣ ~EmrF ∣∣∣ e−jωτmr +

∣∣∣ ~EfrF ∣∣∣ e−jωτfr) ,
(20)

where γ(r) is the cell-size gain factor which is a function
of the radius of the cell -the larger the cell, the bigger the
surface of the cell that is being exposed to the incoming light,
and hence the more energy will be focused at the focal line-,
Gmp is the multi-path gain caused by the reflected rays from
adjacent cells, which can be estimated by means of extensive
simulations and depends on different densities and distribution
of the cells in the medium, d is the total distance between the
light source and the point on the focal line and is considered
to belong to the interval d ∈ l0 + [r(1 + fl) r(1 + fu)],
for the equation to be valid. It can be observed that for a
given l0, the value of α can be calculated from d. Note that
E and τ are functions of frequency f and d (or equivalently
α), and we consider the normalized channel impulse response

for which
∣∣∣ ~E0

∣∣∣ is assumed to be equal to one. Furthermore,
there is no time difference between the secondary rays with
the same angle of incident θi or equivalently α, since they
pass through identical distances. Therefore, we can do the
integration without considering the time, and then we will
add the time delay for the final expression of H(f, d) which
contains both the main and secondary rays that are received
with different time delays.

IV. TIME DOMAIN ANALYSIS

A. Excitation Pulse Source

For the time domain analysis, we consider an electric point
dipole antenna at the distance dac from center of the cell (as
shown in Fig. 1), with the dipole current moment direction np
and magnitude p as follows:

np = âx, p = pulse(t− 5σ), (21)

where âx represents the unit vector in the direction of x
axis, and since the current applied to the dipole antenna and
hence the E-field is along x axis, therefore the direction of
propagation is through the z axis. Furthermore, the function
pulse(t) is defined as the first derivative of a Gaussian pulse
as follows:

pulse(t) = − a0t√
2πσ3

e−
t2

2σ2 , (22)

where a0 is the peak amplitude of the Gaussian pulse, and σ
represents the standard deviation or the Gaussian RMS width.

To find the channel impulse response for the whole fre-
quency spectrum, we need an ideal Dirac delta function
δ(t) as the transmitting pulse. However, the Dirac function
is feasible neither for real experiments nor for simulation
software. In addition, we are only interested in the channel
response for a certain frequency band which is so called the
optical window. Therefore, we use the femtosecond-long pulse
in (22) as the excitation for the dipole antenna. Moreover,
femtosecond-long pulse-based modulation, which also uses the
first derivative of a Gaussian pulse, has been recently proposed
as a promising modulation for communications within the THz
band [27]. This modulation method can be used for iNSO
communications as well, with the modification of σ and hence
the central frequency of the pulse in the frequency domain.

If we take the Fourier transform of (22), we will have the
frequency domain representation of the pulse as following:

Pulse(f) = a0(j2πf)e−
(2πfσ)2

2 . (23)

Now by taking the first derivative of Pulse(f) with respect
to f , and putting it equal to zero, we can find the maximum
frequency of the pulse in the frequency domain as follows:

fM =
1

2πσ
. (24)

As it can be seen in (24), by choosing the appropriate value
for the Gaussian pulse RMS width σ, the maximum frequency
can be set to a desired value. Fig. 5 depicts both the time
and frequency representation of the femtosecond-long gaussian
pulse where a0 = 10−25, and σ = 1/π [fs], and hence fM =
500 [THz].
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Fig.5. Gaussianfemtosecond-longpulseintimeandfrequencydomains.

B.ChannelImpulseResponse

Toobtainthechannelmodel(channelimpulseresponse)
inthetime domain, we definethetransmittedsignal
(femtosecond-longpulseinSec.IV-A)asEtxatapointbefore
thecell,andthereceivedsignalErxatapointafterthecell.By
dividingtheFouriertransformofthereceivedpulseF(Erx)by
theFouriertransformofthetransmittedpulseF(Etx),wecan
obtainthechannelresponseinthefrequencydomainH(f,d).
TakingtheinverseFouriertransformofH(f,d),wecanobtain
thechannelimpulseresponseh(t,d)asfollows:

h(t,d)=F−1 H(f,d)=F−1
F Erx(t,d)

F Etx(t,d)
, (25)

wheredisthedistancebetweentheantennaandthereceiver
point. WeuseFiniteElementMethod(FEM)tosimulatethe
lightpropagationthroughtheRBCintimedomainwhich
solvesMaxwell’sequationswithpotentialformulationintime
domainasfollows:

∇×µ−1r (∇×A)+µ0σc
∂A

∂t
+µ0

∂

∂t
0r
∂A

∂t
=0,(26)

whereAisthemagneticpotentialvector.µ0and 0arethe
free-spacepermeabilityandpermittivityrespectively,andσc
istheelectricalconductivityofthematerial.Themagnetic
potentialvectorAandtheelectricfieldEarerelatedtoeach
otherwiththefollowingequation:

E=−∇Φ−
∂A

∂t
, (27)

where Φ isthescalarelectricpotential. Asexplainedin
Sec.IV-A,thepeakofthefemto-secondGaussianpulsein
thefrequencydomainfM canbetunedthroughthestandard
deviationσ,hencetherelativepermittivity r(w)ofthe
mediumandcelllayerscanbecalculatedfromequation(2)
andTableIaccordingly.Thisway,theimpulseresponseofthe
channelgivenin(25)isvalidforthespecificfrequencyfM

Point Dipole
Antenna

Red Blood 
Cell

(a) (b)

Delayed
&

Focused

.
COMSOLMultiphysics[28]isutilizedtoperformtheFEM

simulationsintimedomain.Despitethesimulation model
isgenericandcanbeutilizedforanytypeofbiological
cellsandmedium,weparticularizeitforthespecificcase
oftwonanosensorscommunicatinginsidethebloodvessel
asexplainedinSec.II-A.TheRBCfollowsthecellmodel
explainedinSec.II-Awiththethreeaforementionedlayers.
Theradiusofthecellisconsideredtobe0.675µmandthe
antennaisplaced2.7µmfarfromthecellcenter.Sincethe

Fig.6. Electricfieldattwotimesbeforeandafterpassingafixeddistance
intwoscenariosof(a)nocelland(b)havingasingleRBCinbetween.

propagationmediumisdispersive,withdifferentfrequency,
therelativepermittivityaredifferentforcytoplasm,fat,and
Hb.Thedetailedwavelengthandcorrespondingpermittivity
areprovidedinTableI.Theantennaisconsideredtobea
unitdipole,i.e.,I0l=1,whereI0istheinputcurrentandl
istheantennalength.Thecellislocatedinsidethemedium
containingofplasmawhichisenclosedbyaperfectmatched
layer(PML)andsurroundedbyascatteringboundarycondi-
tion.ThePMLisutilizedtomimictheinfiniteenvironment
anditsthicknessissettohalfwavelength.Thesimulationin
Fig.6isconductedwithwavelength450nm.Thisfigureshows
theelectricfield,emittedfromthepointdipoleantenna,attwo
timesbeforeandafterpassingafixeddistanceintwoscenarios
of(a)nocelland(b)havingasingleRBCinbetween.Asit
canbeseeninthefigure,thereisasmalldelay(fractionofa
femtosecond)inthereceivedpulseaftertheRBC.Thisdelay,
∆t
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inmediawithdifferentrefractiveindicesasdiscussedearlier
inSec.III-B.

Fig.7. ChannelimpulseresponseforwithandwithoutRBCscenarios.
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Fig. 7 shows the channel impulse response for both of
the aforementioned scenarios. The impulse response has been
calculated by exploiting equation (25) at a fixed distance after
the cell. The impulse delay, ∆t, of the two scenarios can be
seen in this figure as well. Moreover, the impulse response
of the scenario with the cell in between, has a second smaller
impulse which is ∆τ delayed from the main one. This happens
due to the multi-path reception of the signal through the main
and focusing rays that have been discussed in Sec. III. It is also
interesting to note that the main impulse of with/cell scenario
shows a higher value than without/cell. This phenomenon can
also be explained with the focusing nature of the RBCs. By
filtering the ripples before and after the main impulses in
Fig. 7, which is mostly due to the backscattered field form the
boundaries of the simulation, the channel impulse response for
the with/cell scenario can be simplified as follows:

h(t) = γ1δ(t− (t0 + ∆t)) + γ2δ(t− (t0 + ∆t+ ∆τ)), (28)

where t0 is the propagation delay of the wave from antenna
to the receiver point without the cell in between, γ1 and γ2
are the gain of the main impulse response and the multi-path
reception respectively as shown in Fig. 7.

It is relevant to note that both the shape and the orientation
of the cell (specially when not symmetric, i.e., not sphere
shape) play roles in the propagation pattern of the light in
terms of changing the focusing property and the angle of
the outgoing focal line after the RBCs. Fig. 8 depicts the
received electric field and the channel impulse responses for
two different shapes of the cells, ellipse on the top row (as an
example of infected RBC) and biconcave on the bottom row
(for the healthy RBC). As it can be seen in the figure, the
intensity and delay of the channel impulse response changes
with different shapes and different orientations. The shown
channel impulse responses will not only guide the development
of practical communication strategies among nanosensors,
but also can be used as fingerprints that enable new nano-
biosensing strategies to identify diseases by detecting the slight
changes in the channel impulse response, caused by either
the change in shape of the blood cells or the presence of
pathogens. For the specific case of RBC in blood, the focusing
property preserves even for the real biconcave shape with
different orientations as proven experimentally in [19]. It is
relevant to note that the focusing property is caused by the
Hb inside the cell which is not necessarily shaped like the
cell outline. Moreover, the biconcave shape can be estimated
as two adjacent spheres containing Hb which furthermore can
be utilized as an analytical model for the real RBC shape to
find the closed-form solution of the wave propagation after the
RBC.

As mentioned earlier, the main focus of the present paper is
the communication channel modeling in biological tissues. In
this regard, the proposed channel model can be utilized and
adjusted for any types and shapes of the cells as discussed
in Sec. III-C and equation 20. It is relevant to note that a
healthy RBC has a biconcave shape. However, the shape of
the RBCs might be changing due to various types of disease,
e.g., sickle-cell anemia and spur cell anemia (Acanthocyte),
in which the shape of the RBCs will change to a sickle

shape or a many-pointed spike-like star respectively. These
differences in the shapes, as shown in Fig. 8, will cause
small changes in the channel impulse response that can be
utilized as fingerprints to diagnose diseases (which is out of
the scope of the current paper). We emphasize here again that
these small changes, although can be detected to diagnose
diseases, will not change the characteristics of the channel
for the communication purposes.

Moreover, it can be seen that the intensity of the electric
field is much higher in the case that the cells are aligned
in parallel with the direction of the light propagation. This
happens because of the parabolic shape inside the ellipse or
biconcave cells. However, as mentioned earlier the sphere can
be used as a general model for communication purposes with
a good approximation for all types of cells with different
shapes due to the random positions and movement of the cells
in different layers of biological tissues. This approximation
is accurate enough to model the intra-body communication
channel in terms of analyzing the channel impulse response
and calculating the path loss for the communication purposes.
As it can be seen in Fig. 6 and Fig. 8, the main impulse peak of
a sphere shaped cell is an average of the ellipse or biconcave
with different angles.

V. FREQUENCY DOMAIN ANALYSIS

A. Excitation Source in Frequency Domain

For the frequency domain analysis, we consider two kinds
of EM wave sources, namely, an electric point dipole antenna
and a plane wave excitation. For the point dipole antenna, we
utilize the same point source as in the time domain analysis
with the following parameters:

np = âx, p = a0cos(2πfct). (29)

As opposed to the time domain analysis in which we define a
femtosecond-long Gaussian pulse, here we have a pure infinite
sinusoidal wave for each central frequency of interest fc.
If we choose fc = fM , then the same values of relative
permittivity can be used for both the time and frequency
domain analyses. The point source is used to find the channel
model in the frequency domain and compare the results with
the time domain analysis.

We also use a plane wave excitation to validate the Geomet-
rical channel model. For the plane wave we have the following
equation for the electric field as shown in Fig. 2:

~E0 =
∣∣∣ ~E0

∣∣∣ e−jk0zâx =
∣∣∣ ~E0

∣∣∣ e−j 2π
λ0
zâx, (30)

where k0 is the free-space wavenumber. As it has been
mentioned earlier, the direction of the ~E vector is along the x
axis which means that the electric wave oscillates over the x
axis, and as a result the plane wave propagates through the z
direction. It is worthy of note that even when we are using a
dipole antenna, the propagating wave can be considered as a
plane wave with good approximation if the cell is far enough
(at least two times of the wavelength) from the source.
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Fig.8.Simulationsofreceivedelectricfieldandchannelimpulseresponsesfortwodifferentshapesofthecells,ellipseonthetoprowandbiconcaveonthe
bottomrow,withdifferentorientation.

B.ChannelModelinFrequencyDomain

Theelectricfieldiscalculatedalloverthespacebyfinding
thesolutiontothefollowing Maxwellequationfordifferent
layersoftheRBCandthemediumbyutilizingFEMsimula-
tions:

∇×µ−1r (∇×E)−k
2
0(r−

jσc
ω0
)E=0. (31)

TheresultsoftheFEMsimulationsforasingleRBCcanbe
foundinFig.9.Thesimulationshasbeendonein3Dandthe
resultsareshownonthexzcut-plane.Apointdipoleexcitation
sourceisutilizedatλ=450nm.TheRBClayersfollowthe
cellmodelexplainedinSec.II-A,andtheradiusofthecellis
setto0.675µm.Asthisfiguredepicts,theelectricfieldwillbe
focusedatanellipticalareaafterthecellwhichisinagreement
withtheresultsthatwehaveachievedbothingeometricaland
timedomainanalyses.
Bydefiningacut-linethroughthecentrallineofthecell

(focalline),theelectricfieldintensitygainafterthecellcan
beseeninFig.10.Itcanbeseenfromthisfigurethatwhen
thewavelengthissmallerthanthecellradiusthefocusing
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Fig.10. NumericalcalculationandFEMsimulationofelectricfieldintensity
(V/m)fordifferentwavelengthswithasinglecellcenteredatz=0.

propertyoftheHbinsidethecellissignificantandahigher
gainisobservedafterthecellonthefocalline,whichagrees
withthegeometricalanalysisinSec.III.However,whenthe
wavelengthisequalorbiggerthanthecellradius,thewave
propagationfollowstheMietheoryofscatteringandmostof
thefieldisforwardscatteredwithasmallamplification.

Ananalyticalmodelinfrequencydomainfortheimpact
ofasingleRBConpropagationofthelightisgivenin
ourpreliminarywork[19].Consideringthesamescenario
illustratedinFig.1,theelectricfieldatanypointoutsideofthe
cellcanbewrittenasequation(32)atthetopofthenextpage,
whereEaandEscarepresenttheradiatedelectromagnetic
fieldbytheantennaandthescatteredelectricfieldrespectively.
oaandocaretheantennaandcelloriginsasshowninFig.1,
andmatrixHoa→oc consistsofthetranslationalcoefficients.
ristheradialvectorfromtheoriginoatoapointinspace.I0
istheinputcurrent,listheantennalength,andk=w

√
µ.

TheexpressionsofmatricesM3mn,N
3
mn,Cmn,Dmn and

rowvectorIaregivenin[19],andTistheT-matrix[29].
EθinandEφinarethecomponentsoftheincidentfieldEin
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Et = Ea(oa, r) + Esca(oc, r) = −ωµI0lk
4π

I
[
M3

mn(oa, r)
N3
mn(oa, r)

]

+



{
T
[
−ωµI0lk4π IHoa→oc

]T}T [M3
mn(oc, r)

N3
mn(oc, r)

]
, when doaoc < dt

{
T
{[
Eθin , Eφin

] [
Cmn(θin, φin),Dmn(θin, φin)

]}T}T [M3
mn(o, r)

N3
mn(o, r)

]
, when doaoc ≥ dt

(32)

in directions θ̂in and φ̂in of the spherical coordinates, and
θin and φin denote the direction of the incoming wave. doaoc
is the distance between the center of the antenna and the
center of the cell. dt is the threshold distance after which the
incoming wave from a point dipole antenna can be regarded as
plane wave. Finally T stands for transpose. Interested readers
are encouraged to peruse the details on the derivation of the
analytical model in [19]. Fig. 10 shows the agreement of both
the FEM simulation and the numerical result (obtained from
the analytical model) for four different wavelengths of 450 nm,
500 nm, 800 nm, and 850 nm.

Fig. 11 shows the time domain representation of the electric
field at two points on the focal line before (tx) and after
(rx) the cell. This figure is derived by taking the inverse
Fourier transform of the electric field in the frequency domain
(obtained by the FEM simulations). The electric field in the
time domain has a pure sinusoidal waveform with the time
period of T = 2 fs which is the result of the single frequency
simulations at fc and can be analytically validated as follows:

T =
1

fc
=

1
c
λ0

=
nrλ

c
=

1.34× 450× 10−9

3× 108
≈ 2 fs, (33)

where nr(w) = 1.34 is the real part of the refractive index of
the media (plasma) at λ = 450 nm according to Table I, and
λ0 is the wavelength of the electric field in free-space.

As shown in Fig. 11, the received signal preserves its
sinusoidal shape with the same period, T . It can also be
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Fig. 11. Time domain representation of the Electric field with and without
a RBC at two points before and after the cell with a distance of 2.7 µm and
r = 0.675 µm.

seen that the received signal will be attenuated and delayed
(or equivalently phase shifted) after passing through a certain
distance. It is relevant to note that the received signal after
the RBC has a higher peak intensity than the case without
the cell in between, which verifies the focusing property of
the RBCs. Moreover, there is a time delay ∆t

′
between

the received signal of the two cases (with and without a
RBC in between). This time delay supports the results of
the time domain impulse response which has been explained
in Sec. IV-B and the related delays ∆t and ∆τ in Fig. 7.
More specifically, the received signal after the cell (rx) can be
calculated based on the channel impulse response given in (28)
as
∣∣∣ ~Erx∣∣∣ = h(t) ∗

∣∣∣ ~E0

∣∣∣, where (∗) represents the convolution
operator. Since the source is considered to be a pure infinite
sinusoidal wave (29), the time delay ∆t

′
in Fig. 11 can be

calculated as (see Appendix C):

∆t
′

= arctan

[
− sin(∆τ)

cos(∆τ) + γ2
γ1

]
+ ∆t+ ∆τ. (34)

It is relevant to note that if the multi-path received signal is
too weak compared to the main received signal, i.e., γ2 � γ1,
then (34) will be reduced to ∆t

′ ≈ ∆t.
To further verify the results of the geometrical analysis,

FEM simulation has been done with a plane wave source.
Fig. 12 depicts the intensity of the light while propagating
through a single RBC. In (a) the electromagnetic radiation
simulation results for two different sizes of the cell, namely,
small (r = 1.35 µm) and large (r = 2.70 µm) has been shown.
As it can be seen in this figure, the bigger the size of the
cell the more the light will be focused at a focal area after
the cell. A geometrical simulation which only traces the light
rays is depicted in (b) for the large cell which verifies the
electromagnetic wave simulations in (a). It is worthy of note
that a normal RBC has a diameter around 7 µm which is even
bigger than the large cell that we have considered here and
consequently has a higher focusing capability. In our analysis,
we consider a scaled version of the cell model with the exact
same electromagnetic properties which is still able to prove
the focusing capability of the RBC as well as to validate the
analytical model. Smaller cells are considered here in order
to reduce the computational load. Moreover, here we only
consider the Hb layer inside the cell which plays the main role
in focusing the light. It is relevant to note that the proposed
cell model is a generic model that can be applied to any types
of cells with various sizes and electromagnetic properties.

Additionally, by defining a cut-line through the central line
of the cell in the electromagnetic radiation simulation results,
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Fig.12. Electricfieldintensityafterone RBCilluminated withport
antenna(a)FEMsimulationsforthreescenariosofno-cell,smallcell
(r= 1.35µm)andlargecell(r= 2.70µm)fromlefttorightrespectively
(b)GeometricOpticssimulationsforthelargecell.

wecancomparetheoutcomeofthegeometricalanalysiswith
thefrequencydomainsimulationresults.Fig.13showsthe
intensityofthelightoverthefocallineforboththesmalland
largesizecells.Onceagain,hereitcanbeseenthelargercells
arecapabletofocusthelightmorethansmallerones.Note
thattheanalyticalmodelresultsareshownonlyonthefocal
areabetweenthepointsflandfu
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asinequations(4)and(5)
respectively.Howeverthesimulationresultsareshownfora
longerdistanceoverthefocalline.Itisobservablethatthe
analyticalmodelisabletoaccuratelycalculatetheintensity
overthefocallinewhichsupportsthefocusingcapabilityof
theRBCs.Itisworthmentioningthatoutsideofthefocal
linetheintensityofthefieldfollowstheusualexponential
lossduetothelossymedium(hereplasma)anditcanbealso
analyticallyderivedbyutilizinganexponentiallossformula.

Finally,simulationresultsforthecaseof multiplecells
positionedrandomlyinsidethebloodplasmaisshownin

Fig.13. Electricfieldintensityonthefocalline,analyticalvssimulation
resultsforasingleRBCwithtwosizes,small(r= 1.35µm)andlarge
(r=2.70µm).

Fig.14. Electricfieldpropagationpatternaftermultiplerandomlyplaced
RBCsilluminatedwithaportantenna(a)withcells(b)withoutcells.

Fig.14.Itcanbeseenthatwhilein(a)thelightissignificantly
amplifiedatsomeraysattheendofthepath,in(b)thelight
intensitystaysalmostthesamefortheentirepath.Thisresults
showthatthankstothefocusingcapabilityoftheRBCs,the
signaldetectionwillbeeasierinpresenceoftheRBCsin
blood.ItisrelevanttonotethatinFig.14,theareaswith
lowerEMwaveintensityistheeffectofthefocusingproperty
oftheRBCs.Asanalyzedindetailsforthesinglecellscenario
inSec.IIIanddepictedinFig.12,theraysoftheopticalwave
willconvergeonthefocallineafterthecell,whichresultsin
lowerEMwaveintensityintheareasaroundthecentralline.

VI.CONCLUSIONS

Majorprogressinthefieldofnanoelectronics,nanopho-
tonicsandwirelesscommunicationisenablingtheintercon-
nectionofnanosensors. Motivatedbythisresults,inthis
paper,weinvestigatedtheimpactofsinglebiologicalcells
andcellassembliesonthepropagationofopticalwave.First,
ageometricalapproachistakentotraceandaggregatethe
pathlossandtimedelayofeachoftheraysthatencountera
biologicalcell,andaclosedformchannelimpulseresponseis
derived.Then,wehavedevelopedacomprehensiveintra-body
communicationchannelmodelinthetimedomainandhave
furtherinvestigatedtheeffectofthesizeandshapesofthecells
onthechannelimpulseresponse.Finally,wehavepresented
ananalyticalfrequencydomainchannelmodelandstudiedthe
behaviorofrandomlypositionedcellsinsideabloodvessel
throughextensivesimulations.Wehavevalidatedtheproposed
analyticalchannelmodelbymeansofelectromagneticsimu-
lationsforaRBCinsidethebloodplasma.
TheresultsshowthatRBCsperformasopticalmicro-lenses
intermsofconfiningthelightthatisbeingradiatedtothem
onafocallinerightafterthecell.Thisfindinghasbeen
provedinthispaperbasedonthoroughanalytical models
andalsoagreeswiththerecentexperimentalachievementson
interactionsoflightandRBCs.Furthermore,wehaveshown
intheresultsthatdifferentshapeandsizeofthecellsdueto
variousdiseasescausesmallchangesinthechannelimpulse
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response. The proposed model will not only guide the develop-
ment of practical communication strategies among intra-body
nanosensors, but also enables new nano-biosensing strategies
able to identify diseases by detecting the slight changes in
the channel impulse response, caused by either the change
in shape of the blood cells or the presence of pathogens.
Compared to ex vivo measurements, which are conducted on
samples extracted from the human body, iWNSNs promise
to engender significant contributions to our understanding of
(sub) cellular processes under normal and diseased conditions
when and where they occur.

APPENDIX A
FOCAL LINE OF A BALL LENS

From the Snell’s law of refraction we have the following in
Fig. 2:

nr,2sin(θr) = nr,1sin(θi),

where nr,1 and nr,2 are the real part of the refractive index
of the medium and the cell respectively, and θi and θr are the
incident and refracted angles. The refracted angle inside the
sphere can be derived as follows:

θr = arcsin
(nr,1
nr,2

sin(θi)
)
.

Since sin(θi) = dr
r , we can further obtain θi and θr as follows:

θi = arcsin(α), θr = arcsin(
nr,1
nr,2

α).

We are interested in finding f(α) to obtain the focus point
F (Fig. 2). Following the Sine rule for triangles we have:

r · f(α)

sin(Ω)
=

r

sin(ψ)
.

Since ψ = 2θi − 2θr and Ω = π − θi, we have:

f(α) =
sin(Ω)

sin(ψ)
=

sin(π − θi)
sin(2θi − 2θr)

.

Using the definitions of θi and θr, f(α) can be further
simplified as:

f(α) =
α

sin
[
2
(
arcsin(α)− arcsin(

nr,1
nr,2

α)
)] .

The lower bound of the function f(α) is at α = 1, therefore:

fl = f(α)
∣∣∣
α=1

=
1

sin
[
2
(
π
2 − arcsin(

nr,1
nr,2

)
)]

=
1

2sin(arcsin
nr,1
nr,2

)cos(arcsin
nr,1
nr,2

)

=
1

2
nr,1
nr,2

√
1−

(
nr,1
nr,2

)2 =
n2r,2

2nr,1

√
n2r,2 − n2r,1

.

For the upper bound we have:

fu = f(α)
∣∣∣
α=0

=
0

sin
[
2
(
arcsin(0)− arcsin(0)

)] ,

where the above equation is indeterminate. Therefore, to find
the upper limit, we find the limit of f(α) as α approaches
zero, using L′Hôpital′s rule as follows:

fu = lim
α→0

f(α)

=

(
1√

1−α2
−

nr,1
nr,2√

1−
n2
r,1

n2
r,2

α2

)−1

2cos
[
2
(
arcsin(α)− arcsin(

nr,1
nr,2

α)
)]∣∣∣∣∣

α=0

=

(
1− nr,1

nr,2

)−1
2

=
nr,2

2(nr,2 − nr,1)
.

APPENDIX B
AGGREGATED FIELD OF THE SECONDARY (FOCUSING)

LIGHT RAYS

To find the light intensity of the secondary (focusing) rays
~EfrF (α) with parameter α, we take the integral of each of the
secondary rays ~ErayF (α, θ) over all the planes of incidents by
covering θ from zero to 2π, where θ is the angle between the
plane of incident and the x axis in spherical coordinates:

~EfrF (α) =

∫ 2π

0

~ErayF (α, θ)dθ,

where ~EfrF (α) is the total received field from all the secondary
rays that are focusing at the focal point with the distance r ·
f(α) from the center of the cell, and ~ErayF (α, θ) is the intensity
of a single secondary ray at the aforementioned point which
is coming through the plane of incident that forms the angle
θ with the axis x (Fig. 4), and is given by:

~ErayF (α, θ) = LabsLsca
(
Lfr,pbound

~E0p + Lfr,sbound
~E0s

)
,

where ~E0p and ~E0s are the p- and s-polarized parts of the
incoming ray ~E0 as shown in Fig. 4, and are given by:

~E0p =
∣∣∣ ~E0

∣∣∣ cos(θ)âp, ~E0s =
∣∣∣ ~E0

∣∣∣ sin(θ)âs,

where âp and âs are the unit vectors in the direction of ~E0p

and ~E0s and are given by:

âp = cos(θ)âx + sin(θ)ây,

âs = sin(θ)âx − cos(θ)ây.

By substituting the definitions of ~E0p and ~E0s in ~ErayF (α, θ),
the total received field ~EfrF (α) can be further written as the
integral at the top of next page. It can be easily observed
that the answer of the integral is equal to zero in the y and
z directions. Hence the aggregated field coming from the
secondary rays is further simplified to:

~EfrF (α) = π
∣∣∣ ~E0

∣∣∣ (Lfr,pcos(ψ) + Lfr,s)âx.
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~EfrF (α) =
∣∣∣ ~E0

∣∣∣ (Lfr,p ∫ 2π

0

cos2(θ)cos(ψ)âx + sin(θ)cos(θ)cos(ψ)ây + cos(θ)sin(ψ)âzdθ

+Lfr,s
∫ 2π

0

sin2(θ)âx − sin(θ)cos(θ)âydθ
)
.

APPENDIX C
TIME DELAY (PHASE SHIFT) OF TWO SINUSOIDAL SIGNALS

Consider the general case of two sinusoidal signals x1(t) =
sin(t) and x2(t) = a sin(t − α) + b sin(t − β). The delay,
∆t0, between x1(t) and x2(t) is the time difference between
the peak of the two signals or equivalently the rising zero
crossing point, i.e., x1(0) = 0 and x2(∆t0) = 0. Therefore
∆t0 can be calculated as follows:

a sin(∆t0 − α) + b sin(∆t0 − β) = 0,

⇒ ∆t0 = arctan

[
− sin(β − α)

cos(β − α) + b
a

]
+ β.
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